Tris(3-tert-butylpyrazolyl)hydroborato Zinc Hydride: Synthesis, Structure and Reactivity of a Monomeric Zinc Hydride Derivative

Runyu Han, Ian B. Gorrell, Adrian G. Looney and Gerard Parkin"

Department of Chemistry, Columbia University, New York, New York 10027, *USA*

The monomeric zinc hydride derivative $\{\eta^3-HB(3-Bu^\dagger pz)_3\}Z$ nH has been synthesized by the reaction of ZnH₂ with Tl $\{\eta^3-HB(3-Bu^\dagger pz)_3\}$ and its reactivity investigated.

We have recently described the use of the sterically demand-
ing tris(3-tert-butylpyrazolyl)hydroborato ligand¹ to provide a Butpz)₃}MR (3-Butpz = 3-C₃N₂ButH₂; M = Zn, Mg). Here

ing tris(3-tert-butylpyrazolyl)hydroborato ligand¹ to provide a Bu^tpz)₃}MR (3-Bu^tpz = 3-C₃N₂Bu^tH₂; M = Zn, Mg). Here well-defined coordination environment that has allowed an we report that the **tris(3-tert-butylpyrazolyl)hydroborato** investigation of the synthesis and reactivity of the mono- ligand also allows isolation of the monomeric zinc hydride

Scheme 1

Zn ₩ U $N(32)$ N(22) $N(12)$ $N(21)$ N(31) $N(1)$

Fig. 1 ORTEP diagram of $\{\eta^3$ -HB(3 -Bu^tpz)₃}ZnH. Selected bond distances (Å) and angles (°): $Zn-N(12)$ 2.078(5), Zn-N(22) 2.089(6), Zn-N(32) 2.079(5); N(12)-Zn-N(22) 90.2(2), N(12)-Zn-N(32) 91.72, N(22)-Zn-N(32) 92.3(2).

B

derivative $\{n^3-HB(3-Bu^tpz)_3\}ZnH$, which has been structurally characterized by X-ray diffraction studies.

The zinc hydride complex $\{\eta^3-HB(3-Bu^tpz)_3\}ZnH$ is readily prepared by metathesis of ZnH_{2}^{4} with Tl{ η^{3} -HB(3-Bu^tpz)₃} $[eqn. (1)].$

$$
ZnH_2 \xrightarrow{\text{TI}\{\eta^3\text{-}HB(3-Bu'pz)_3\}} \{\eta^3\text{-}HB(3-Bu'pz)_3\} ZnH
$$
 (1)

The X-ray structure of $\{\eta$ -HB(3-Bu^tpz)₃}ZnH⁺ (Fig. 1) clearly identifies its monomeric nature. The only other structurally characterized zinc hydride derivative, that we are aware of, is that of dimeric $[HZnN(Me)CH_2CH_2NMe_2]_2$.⁵ Several other oligomeric zinc hydride derivatives^{4,6}
have been reported including $[HZnOC(CH_3)_3]_4$,7 have been reported including $[HZnOC(CH_3)_3]_4$,7 $[HZnO(CH₂)₂NMe₂]$ ₂,⁸ and $[RZnH(\tilde{C}_5H_5N)]_3$ (R) CH_2CH_3, C_6H_5 .⁹ Although the hydrogen atom bound to zinc could not be located by the X-ray diffraction study, good evidence for the presence of a Zn-H bond is provided by NMR and IR spectroscopic studies. Thus, the hydride resonance is observed at δ 5.36 in the ¹H NMR spectrum, and has been confirmed by the ²H NMR spectrum of the isotopomer $\{\eta^3-HB(3-Bu^tpz)_3\}ZnD$. Similarly, $v(Zn-H)$ is observed as a strong absorption at 1770 cm^{-1} in the IR spectrum, which shifts to 1270 cm⁻¹ ($v_H/v_D = 1.39$) upon deuterium substitution. The expected axial location of the hydride ligand is clearly suggested by the trigonal coordination of the **tris(3-tert-butylpyrazolyl)hydroborato** ligand illustrated in Fig. 1.

The reactivity of $\{\eta^3-HB(3-Bu^tpz)_3\}ZnH$ is shown in Scheme 1. Protic reagents ($HX = H_2\overline{S}$, Me₃SiOH, CH₃CO₂H, PhC $=CH$) react at the Zn-H bond to give $\{n^3-HB (3-Bu^tpz)_3$ ZnX and H₂. The Zn-H bond also undergoes metathesis with a variety of halide derivatives, $e.g.$ CCl₄, CHBr₃, PhCH₂I, CH₃COCl, I₂ and Me₃SiCl, to give

Fig. 2 ORTEP diagram of ${n^3-HB(3-Bu^tpz)_3}Zn(n^2-O_2CCH_3)$. Selected bond distances (\AA) and angles (°): Zn-N(12) 2.061(5), Zn-N(22) 2.075(5), Zn-N(32) 2.108(6); Zn-O(1) 1.859(6); N(12)-Zn-N(22) 92.1(2), N(12)-Zn-N(32) 97.0(3), N(22)-Zn-N(32) 91.4(3), N(12)- $Zn-O(1)$ 122.1(3), $N(22)-Zn-O(1)$ 115.6(3), $N(32)-Zn-O(1)$ 129.2(2).

 ${\eta^3-HB(3-Bu^tpz)_3}ZnX (X = Cl, Br, I)$. Although ${\eta^3-HB(3-HB)}$ $Bu^tpz)₃ZnH$ does not insert ethylene into the Zn-H bond to give the ethyl derivative $\{\eta^3-HB(3-Bu^tpz)_3\}ZnCH_2CH_3$ (at 120 °C and 1 atm.), a clean insertion of $CO₂$ is observed at 50 °C to give the η ¹-formato derivative, $\{\eta$ ³-HB(3- $Bu^tpz)_{3}Zn(\eta¹-O_{2}CH)$. The complex is characterized as an η ¹-rather than η ²-formato derivative on the basis of the absorptions due to $v_{\text{asvm}}(CO_2)$ [1655 cm⁻¹] and $v_{\text{sym}}(CO_2)$ $[1290 \text{ cm}^{-1}]$ in the IR spectrum. These absorptions have been identified by the shifts observed for the isotopomers $\{\eta^3-\}$ $HB(3-Bu^tpz)_3\}Zn(\eta^1-O_2^{13}CH)$ and $\{\eta^3-HB(3-Bu^tpz)_3\}Zn (\eta^1$ -O₂CD). Most notably, the large difference between $v_{sym}(\text{CO}_2)$ and $v_{asym}(\text{CO}_2)$ ($\Delta v = 365 \text{ cm}^{-1}$) is very diagnostic of η ¹-coordination. \ddagger In support of these results, the molecular structure of the related η^1 -acetato complex $\{\eta^3$ -HB(3- $Bu₁oz₁z₁(n¹-O₂CCH₃)$ has been determined by X-ray diffraction as shown in Fig. **2.9** The observation of unidentate rather than bidentate coordination of the formato and acetato ligands in $\{\eta^3-HB(3-Bu^tpz)_3\}Zn(\eta^1-O_2CR)$ (R = H, CH₃) is undoubtably a consequence of the sterically demanding

 $\frac{\partial}{\partial \Omega}$ *Crystal data* for $\{\eta^3-HB(3-Bu^tpz)_3\}Zn(\eta^1-Q_2CCH_3)\cdot(C_6H_6)$: $C_2\eta^2H_{43}N_6BO_2Zn$, $M = 583.90$, orthorhombic, P_2 ₁*cn* (No. 33), *a* = $10.433(1)$, $b = 15.832(2)$, $c = 19.292(3)$ Å, $V = 3186.4(8)$ Å³, $Z = 4$, ρ $(caled.) = 1.22$ g cm⁻³, $\mu(Mo-K\alpha) = 8.3$ cm⁻¹ (graphite monochromator), $F(000) = 1240$ electrons, $T = 295$ K, crystal dimensions 0.42 X 0.60 x 0.66 mm. Intensity data were collected on **a** Nicolet R3m diffractometer using monochromated Mo-K α X-radiation (λ 0.71073 A) and were corrected for Lorentz, polarization and absorption effects. A total of 3208 unique reflections with $3^{\circ} < 2\theta <$ 52° were collected of which 2081 with $F > 6\sigma(F)$ were used in refinement. The structure was solved using Patterson and standard difference map techniques. Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions $[d_{CH} = 0.96 \text{ Å}; U_{iso}(H) = 1.2U_{iso}(C)].$ Block-diagonal least-squares refinement converged to $R = 0.0456$, R_w $= 0.0548$, GOF $= 1.380$. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 \uparrow *Crystal data* for $\{\eta^3-HB(3-Bu^tpz)_3\}ZnH$: $C_{21}H_{35}N_6BZn$, $M =$ 447.74, monoclinic, *Pn* (No. 7), *a* = 8.262 l), *b* = 15.465(2), c = 9.696(2)& = 100.76(2)", *V* ⁼1217.2(4) 6 **3,** *2* = 2, p (calcd.) ⁼ 1.22 g cm⁻³, μ (Mo-K α) = 10.6 cm⁻¹ (graphite monochromator), $F(000) = 476$ electrons, $T = 295$ K, crystal dimensions $0.36 \times 0.48 \times$ 0.60 mm. Intensity data were collected on a Nicolet R3m diffractometer using monochromated Mo-K α X-radiation ($\lambda = 0.71073$ Å) and were corrected for Lorentz, polarization and absorption effects. A total of 3464 unique reflections with $3^{\circ} < 20 < 45^{\circ}$ were collected of which 2100 with $F > 6\sigma(F)$ were used in refinement. The structure was solved using Patterson and standard difference map techniques. Most of the hydrogen atoms were located in the difference map after all the non-hydrogen atoms were located and refined anisotropically, but hydrogens on carbon were allowed to refine in calculated positions $[d_{CH} = 0.96 \text{ Å}; U_{iso}(H) = 1.2U_{iso}(C)].$ Block-diagonal least-squares refinement converged to $R = 0.0410$, $R_w = 0.0589$, GOF = 1.548.

 \pm Monomeric carboxylato complexes with Λ values greater than 200 cm-1 invariably have unidentate coordination. G. B. Deacon and R. J. Phillips, *Coord. Chem. Rev.,* 1980, **33,** 227.

environment provided by the **tris(3-tert-butylpyrazoly1)hydro**borato ligand. Interestingly, the related nitrato complex of the slightly less sterically demanding tris(3-phenylpyrazoly1) hydroborato ligand ${\eta^3-HB(3-PhpZ)_3}Zn(NO_3)$ has recently been structurally characterized by Vahrenkamp *et al.* **10** and found to possess a nitrato ligand which is intermediate between monodentate and bidentate coordination. In particular, the Zn-O bond distances of 1.95 and 2.47 Å in $\{\eta^3-HB(3-Phpz)_3\}Zn(NO_3)$ may be compared with the more disparate Zn-O bond distances of 1.86 and 2.95 Å in ${\eta^3-HB(3-Bu^tpz)_3}Zn(\eta^1-O_2CCH_3).$

In summary, the sterically demanding tris(3-tert-butylpyrazoly1)hydroborato ligand has allowed isolation of the monomeric zinc hydride derivative $\{\eta^3-HB(3-Bu^tpz)_3\}ZnH$, which has been characterized structurally, spectroscopically and chemically.

Acknowledgment is made to the National Science Foundation (Grant CHE 90-07512) and to the donors of the Petroleum Research Fund, administered by the **ACS,** for support of this research.

Received, 10th January 1991; Com. 1/001151

- 1 **S.** Trofimenko, J. C. Calabrese and J. **S.** Thompson, *Inorg. Chem.,* 1987, **26,** 1507.
- 2 I. B. Gorrell, A. Looney and G. Parkin, *J. Chem. Soc.*, *Chem. Commun.,* 1990, 220.
- 3 R. Han, A. Looney and G. Parkin *J. Am. Chem.* **SOC.,** 1989,111, 7276.
- 4 A. J. De Koning, J. Boersma and G. J. M. van der Kerk, *J. Organomet. Chem.,* 1980, **186**, 159.
 5 (*a*) N. A. Bell and G. E. Coates, *J. Chem. Soc.* (*A*), 1968, 823; (*b*)
- N. A. Bell, P. T. Moseley, H. M. M. Shearer and C. B. Spencer, *J. Chem.* **SOC.,** *Chem. Commun.,* 1980, 359; (c) N. A. Bell, P. T. Moseley, H. M. **M.** Shearer and C. B. Spencer, *Acta Crystallogr., Sect. B.,* 1980, **36,** 2950.
- 6 *(a)* A. J. De Koning, J. Boersma and G. J. **M.** van der Kerk, *J. Organomet. Chem.,* 1980, 195, 1; *(b)* E. C. Ashby and A. **B.** Goel, *Inorg. Chem.,* 1981, 20, 1096; (c) A. J. De Koning, J. Boersma and G. **J.** M. van der Kerk, *Tetrahedron Lett.* 1977,2547.
- 7 T. L. Neils and J. M. Burlitch, *Inorg. Chem.,* 1989, **28,** 1607.
- 8 G. V. Goeden and K. G. Caulton, *J. Am. Chem. Soc.,* 1981,103, 7354.
- 9 A. J. De Koning, J. Boersma and G. J. M. van der Ker, *J. Organomet. Chem.,* 1978, **155,** *C5.*
- 10 R. Alsfasser, **A. K.** Powell and H. Vahrenkamp, *Angew. Chem., Int. Ed. Engl.,* 1990, 29, 898.